CHEM_TRI : model to fit the chemical denaturation of a trimeric protein.

CHEM_MON_TRI : model to fit the chemical denaturation of a trimer assuming
the following scheme: T---3M---3U

CP_MON: model to fit the partial molar heat capacity for
the unfolding of a monomeric protein 

see Yu et al. 1999 J. Phys. Chem. 103, 2270-

NOTE: The temperature must be in K


a0= first order parameter for Cp,N (kJ/K^2 mol) 
a1= zero order parameter for Cp,N (kJ/K mol)
a8= second order parameter for Cp,N (kJ/K^3 mol)
a2= second order parameter for Cp,U (kJ/K^3 mol)
a3= first order parameter for Cp,U (kJ/K^2 mol)
a4= zero order parameter for Cp,U (kJ/K mol)
a5= DHu (kJ/mol)
a6= Tmax (K)
a7= conc (M)


CP_DIM:  model to fit the partial molar heat capacity for the
	unfolding of a dimeric protein

see Yu et al. 1999 J. Phys. Chem. 103, 2270-

NOTE: The temperature must be in K

a0= first order parameter for Cp,N (kJ/K^2 mol) 
a1= zero order parameter for Cp,N (kJ/K mol)
a8= second order parameter for Cp,N (kJ/K^3 mol)
a2= second order parameter for Cp,U (kJ/K^3 mol)
a3= first order parameter for Cp,U (kJ/K^2 mol)
a4= zero order parameter for Cp,U (kJ/K mol)
a5= DHu (kJ/mol, in monomer units)
a6= Tmax (K)
a7= conc (M, monomer units)


CP_TRIM:  model to fit the partial molar heat capacity for the
	unfolding of a trimeric protein

NOTE: The temperature must be in K

a0= first order parameter for Cp,N (kJ/K^2 mol) 
a1= zero order parameter for Cp,N (kJ/K mol)
a8= second order parameter for Cp,N (kJ/K^3 mol)
a2= second order parameter for Cp,U (kJ/K^3 mol)
a3= first order parameter for Cp,U (kJ/K^2 mol)
a4= zero order parameter for Cp,U (kJ/K mol)
a5= DHu (kJ/mol, in monomer units)
a6= Tmax (K)
a7= conc (M, monomer units)



MELT3: model to fit temperature denaturation of a monomeric protein
monitored with circular dichroism.

NOTE: The temperature must be in oC

See Lavigne et al. 1998. J. Mol. Biol. 281, 165-

a0= mean residue ellipticity for the N state @ 0oC 
a1= constant slope for the temperature dependance 
    of the mean residue ellipticity of the N state
a2= mean residue ellipticity for the N state @ 0oC  
a3= constant slope for the temperature dependance 
    of the mean residue ellipticity of the N state
a4= DHu (kcal/mol) 
a5= DCp,u (temperature independent, kcal/K mol)
a6= Tm (K)





MELT4: model to fit temperature denaturation of a dimeric protein

NOTE: The temperature must be in oC


a0= mean residue ellipticity for the N state @ 0oC
a1= constant slope for the temperature dependance
    of the mean residue ellipticity of the N state
a2= mean residue ellipticity for the N state @ 0oC
a3= constant slope for the temperature dependance
   of the mean residue ellipticity of the N state
a4= DHu (kcal/mol)
a5= DCp,u (temperature independent, kcal/K mol)
a6= Tm (K)
a7= concentration (M)